等腰三角形的性质说课稿

时间:2023-02-18 15:01:56
等腰三角形的性质说课稿6篇

等腰三角形的性质说课稿6篇

作为一名教师,编写说课稿是必不可少的,借助说课稿可以更好地组织教学活动。我们该怎么去写说课稿呢?以下是小编收集整理的等腰三角形的性质说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

等腰三角形的性质说课稿1

一、教材分析

1、教材的地位和作用

《等腰三角形的性质》是“华东师大版八年级数学(上)”第十三章第三节第一课时的内容。本节先课利用轴对称的知识来探索发现等腰三角形的有关性质,然后利用全等三角形的知识证明这些性质。学习过程中运用的“操作——观察——发现——猜想——论证——应用”的方法是探究数学知识的常用方法。同时“等边对等角”和“三线合一”的性质是又是接下来学习等边三角形知识以及等腰三角形的判定的基础知识,更是今后论证两个角相等、两条线段相等、两条线垂直的重要依据。起着承前启后的作用。

2、教材的教学目标:

①知识与技能目标:

掌握等腰三角形的有关概念和相关性质,能运用它们解决等腰三角形的边、角计算问题。

②过程与方法目标:

通过实践、观察、同组间学生以及小组与小组间的合作与交流,培养学生多角度思考问题和分析问题、解决问题的能力。③情感与态度目标:

通过合作交流培养学生团结协作、乐于助人的品质。

3、教学重点与难点:

重点:等腰三角形“等边对等角”和“三线合一”性质的探究和应用。难点:等腰三角形性质的推理证明。

二、学情分析

八年级上期学生学习几何知识有了初步的抽象思维感知,有一定的形象直观思维能力,能进行简单的推理论证。但其运用数学思维的广阔性、紧密性、灵活性比较欠缺,在学习过程中要加强引导和培养。

三、教法与手段

根据本课内容特点和初二学生思维活动的特点,在教学中我将采用“操作——观察——发现——猜想——论证——应用”的教学法,利用分组活动,组间合作与交流从而达到对“等边对等角”和“三线合一”的性质的探究的层层深入。另外,我还将采用多媒体辅助教学,呈现更直观的形象,激发学生的积极性、主动性,增大课堂容量,提高教学效率。

四、学法设计

《数学课程标准》指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来。结合这一理念在探究等腰三角形的性质时我将采用学生实验操作、小组合作、观察发现、师生互动、学生互动的学习方式。

五、教学过程设计

(一)创设情景、导入新课

①复习提问:向同学们出示几张精美的建筑物图片,引入等腰三角形。

(设计意图:感知数学知识和实际生活联系紧密,培养观察力,感受身边处处有数学。)

②等腰三角形的相关概念:

1定义:两条边相等的三角形叫做等腰三角形。

边:等腰三角形中,相等的两条边叫做腰,另一条边叫做底边。

角:等腰三角形中,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

③设问:等腰三角形具有哪些特殊的性质呢?(引入新课)

(二)实验探索、得出猜想:

①动动手:让同学们用剪刀在长方形纸片上剪下等腰三角形,每个人的等腰三角形的大小

和形状可以不一样,把纸片对折,让两腰重合在一起,你能发现什么现象?“比一比”看谁思考的结论最多。

(设计意图:以六人小组为单位学生亲自操作实验,填写导学案。通过组内合作与交流,集

思广益让学生用自己的语言在小组内表达自己的发现。)

②得出猜想:可让学生有充分的时间观察、思考、交流、可能得到的结论:

(1)等腰三角形是轴对称图形

(2)∠B=∠C

(3)BD=CD,AD为底边上的中线

(4)∠ADB=∠ADC=90°,AD为底边上的高线(5)∠BAD=∠CAD,AD为顶角平分线

(设计意图:以小组为单位派代表发言即组间交流补充,引导归纳提炼,使不同层次的学生都能感受新知,建立新的知识体系,为进一步探索做准备。)

(三)证明猜想、形成定理:

1、结论(2)∠B=∠C你能用一个命题表达这一结论并论证它的正确性吗?

(1)语言总结:等腰三角形的两底角相等。(简写成“等边对等角”)

(2)怎样论证这个一命题的正确性呢?

①为证∠B=∠C,需要添加辅助线构造以∠B、∠C为元素的两个全等三角形。

②探讨添加辅助线的方法,让学生选择一种辅助线并完成证明过程。

设计说明:以上过程分小组讨论,在探索过程中鼓励学生寻求不同(作高、中线、角平分线)的方法来解决问题。

利用展台展示各小组不同的证明方法,让学生的个性得到充分的展示。

(3)得出等腰三角形的性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

2、结论(3)(4)(5)你也能用一个命题表达这一结论并论证它的正确性吗?

(1)结合性质一的证明鼓励学生证明总结的命题

(2)得出等腰三角形的性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。

(3)“三线合一”的几何表达:

如图,在△ABC中,AB=AC,点D在BC上

①(1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD

②(2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC(为了方便记忆可以说成“知一求二!”)

③(3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD

2设计意图:充分调动各组学生的积极性、主动性,采用各小组竞争的方式,参照性质1的探索完成本性质的探索与证明。通过本性质的探索让不同的学生有不同的收获,让每个学生的能力都得到提升。

(四)实例剖析、巩固新知:

1、例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度数

2、例2:在△ABC中,AB=AC,点D是BC的中点,∠B=30

(1)求∠ADC的度数(2)求∠BAD的度数

此题的目的在于等腰三角形“等边对等角”和“三线合一”性质的综合运用,以及怎么书写解答题,强调“三线合一”的表达过程。

解:(1)∵AB=AC,D是BC边上的中点(已知)

∴AD⊥BC,∠BAD=∠CAD(等腰三角形的“三线合一”)∴∠ADC=∠ADB=90°(垂直的定义)

(2)∵∠BAD+∠B+∠ADB=180°(三角形内角和等于180°)∴∠BAD=180°-∠B-∠ADB

=180°-30°-90°=60°

……此处隐藏6100个字……,5,6;②当AB=5为底时,则三边为6,6,5。变式练习①:当AB=5为腰时,三边为5,5,12;②当AB=5为底时,三边为12,12,5。此时同学们就会毫不犹豫地得出三角形的周长,这时老师就可以提出质疑,让同学们之间讨论(学生容易忽视三角形三边关系,看能否构成一个三角形)。

例三、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。

(例3是课本例题,有一定难度,让学生展开讨论,老师参与讨论,认真听取学生分析,引导学生找出角之间的关系,利用方程的思想解决问题,并书写出解答过程。本题运用了等腰三角形性质1,并体现了利用方程解决几何问题的思想。)

例四:

在△ABC中,点D在BC上,给出4个条件:①AB=AC②∠BAD=∠DAC③AD⊥BC④BD=CD,以其中2个条件作题设,另外2个条件作结论,你能写出一个正确的命题吗?看谁写得多。(分组讨论抢答)

5、巩固提高

(1)等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为度。

(2)如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=30。求∠1和∠ADC的度数。

(3)课本本章数学活动三“等腰三角形中相等的线段”

设计意图:

(1)题运用等腰三角形的性质1及等腰三角形一腰上的高的画法,由于题目没有图,要用到分类讨论的数学思想,学生能正确画出锐角和钝角三角形两种图形就容易得出结果,也渗透了一题多解。

(2)题同时运用了等腰三角形的性质1,性质2,还有三角形的内角和这三个知识点,培养学生对于知识的灵活运用,“讨论”是本章的数学活动3“等腰三角形中相等的线段”。与等腰性质的证明思路类似,先通过等腰三角形的对称性猜想距离是相等的,然后通过做辅助线构造全等三角形来进行严密的推理。更加说明了合情推理和演绎推理是相辅相成的。

6、课堂小结:不仅仅说你收获了什么,而是让学生从知识上,思想方法上,以及辅助线的做法上等方面具体总结一下。然后教师结合学生的回答完善本节知识结构。学生对于自己的疑惑提出小组内交流,还没解决则全班交流。

7、布置作业:

P55练习1、2、3题

P56习题1、4、6,(选做7,8题)

等腰三角形的性质说课稿6

各位领导、老师:

大家好!

我说课的课题是《等腰三角形》,源于义务教育课程标准实验教科书七年级数学第七章,下面我将来汇报我这节课的教学设计。

一、说教材分析

1、本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。并且在以后直角三角形和相似三角形中等腰三角形的性质也占有一席之地。

2、教学目标:要求学生掌握等腰三角形的性质和等边三角形的每个角都相等,且每个角都为60度,使学生会用等腰三角形的性质定理进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法,培养学生的联想能力

3、教学重点、难点:等腰三角形的性质定理是本课的重点等腰三角形“三线合一”性质的运用是本课的难点

4、为了使学生了解这堂课,本课要求学生自制一个等腰三角形模型,教学过程采用多媒体教学。

二、说教学方法:

“教必有法而教无定法”,只有方法得当,才会有效。根据本课内容特点和初二学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。

三、说学生学法。

“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

四、说教学程序

1、等腰三角形的有关概念,轴对称图形的有关概念。

提问:等腰三角形是不是轴对称图形?什么是它的对称轴?

2、教师演示(模型)等腰三角形是轴对称图形的实验,并让学生做同样的实验,引导学生观察重合部分,发现等腰三角形的一些性质。

3、新课:让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的性质定理1、2。

性质定理1:等腰三角形的两个底角相等

在△ ABC中,∵AB=AC()∴∠B= ∠C()

性质定理:等腰三角形的顶角平分线、底边上的中线和高线互相重合

① ∵ AB=AC ∠1= ∠ 2()∴BD=DC AD⊥BC()

② ∵ AB=AC BD=DC()∴ ∠1= ∠ 2 AD⊥BC()

③ ∵ AB=AC AD⊥BC于D()∴ BD=DC ∠1= ∠ 2()

4、对新知识的感知性应用

指导学生表述证明过程。

思考题:等腰三角形两腰上的中线(高线)是否相等?为什么?

课堂练习:

p。227练习1,练习2(指出这是等边三角形的性质定理)。

5、小结:

(1)等腰三角形的性质定理。

(2)等边三角形的性质

(3)利用等腰三角形的性质定理可证明:两角相等,两线段相等,两直线互相垂直。

(4)联想方法要经常运用,对解题大有裨益。

五、布置作业:

见作业本

六、对于本节的几点思考

1、本节的学习任务比较重要,有定理的证明、定理的计算和证题应用,所以本人针对学生的特点,在上节课例的掌握好的情况下,让学生自己去发现、去联想,能充分地发挥学生主观能动性。练习2其目的有二:(一)使学生在复习本节知识。(二)为下一节内容铺垫。

2、通过学生自己动手实验得到两个定理的内容,可以使他们比较好的掌握知识、提高学习数学的兴趣,达到了事半功倍之效。

3、在整个教学过程中,本人利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯。

总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展的。

9.12等腰三角形的性质定理

板书设计

课题:

等腰三角形的性质定理

例1、书写格式

例2、书写过程

性质定理1

性质定理2

学生板演

《等腰三角形的性质说课稿6篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

友情链接