
有关六年级下册数学教学计划集合5篇
时间过得可真快,从来都不等人,我们的工作又进入新的阶段,为了今后更好的工作发展,此时此刻需要制定一个详细的计划了。相信大家又在为写计划犯愁了吧?下面是小编为大家收集的六年级下册数学教学计划6篇,欢迎阅读,希望大家能够喜欢。
六年级下册数学教学计划 篇1一、学情分析
本班共有学生16人,男生9人,女生7人。
二、全册教学目标
知识与技能目标
1、让学生经历应用百分数的知识解决生活中一些常见问题的过程,进一步理解百分数的意义,体会百分数与分数、小数的联系和区别,加深对方程思想方法的认识,提高解决相关问题的能力;在具体情境中理解比例的意义和级别性质,认识成正比例和成反比例的量,体会不同领域数学内容的内在联系,加深对相关数量关系的理解。
2、让学生通过观察、操作、实验和简单推理,认识圆柱和圆锥的基本特征,探索并掌握圆柱和圆锥的体积公式以及圆柱表面积的计算方法;在具体的情境中,初步理解图形的放大和缩小,初步理解比例尺的意义,初步掌握用方向和距离确定物体位置的方法,并能应用这些知识和方法进行简单的操作或解决简单的实际问题。
3、让学生联系对百分数的理解,认识扇形统计图,初步体会扇形统计图描述数据的特点,能根据扇形统计图所呈现的信息提出或解决一些简单的问题;结合实例,初步认识众数与中位数的意义,会求一组简单数据的众数和中位数,初步体会众数、中位数和平均数等不同统计量的不同特点。
4、让学生通过系统复习,进一步掌握数与代数、空间和图形、统计和概率等领域的知识和方法,进一步明确相关内容的发展线索和逻辑关联,加深对现实问题中数量关系、空间形式和数据信息的理解,提高综合应用数学知识和方法飞能力。
数学思考方面
1、让学生在应用百分数解决相关问题的过程中,进一步培养分析、综合和简单推理的能力,提高用方程表示数量关系的能力,发展抽象思维,增强数感。
2、让学生在认识圆柱和圆锥特征的过程中,丰富对现实空间的感知,进一步增强空间观念;在推导圆柱和圆锥的体积公式以及探索圆柱侧面积和表面积的计算方法的过程中,经历观察、猜想、实验、分析、验证和概括等活动,进一步培养合情推理与初步的演绎推理能力,发展形象思维。
3、让学生在认识图形的放大和缩小、探索并理解比例的意义和性质,以及理解比例尺的意义和应用比例尺解决问题的过程中,进一步体会不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力。
4、让学生在根据方向和距离确定物体位置的过程中,进一步培养观察能力、识图能力和有条理地继续表达的能力,不断增强空间观念。
5、让学生在探索并理解成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。
6、让学生在认识扇形统计图以及众数、中位数的过程中,进一步感受数据的意义和价值,感受不同统计量的联系和区别,发展统计观念。
7、让学生在系统复习的过程中,进一步体会知识间的联系和综合,加深对基本数学原理和方法的理解,培养比较、分析、综合、概括的能力,发展思维的整体性、灵活性和深刻性。
解决问题方面
1、让学生联系已有的知识和生活经验发现并提出一些数学问题,并主动用百分数、方程、正比例和反比例、圆柱和圆锥的体积公式、圆柱侧面积和表面积的计算方法、图形的放大和缩小、比例尺等数学知识和方法解决问题,进一步发展数学应用意识。
2、让学生在解决有关百分数、圆柱和圆锥体积计算、圆柱侧面积和表面积计算等实际问题的过程中,感受借助计算器解决问题的价值,进一步掌握分析和解决问题的基本方法,体会解决问题方法飞多样性。
3、让学生砸用比例、比例尺、正比例和反比例等知识解决简单实际问题的过程中,体会数形结合的思想对于解决问题的价值,进一步积累和丰富解决问题的有效策略。
4、让学生在用方向和距离描述物体的位置,用扇形统计图和相关统计量解释数据信息、解答简单问题的过程中,进一步体会合作交流的重要性,提高合作交流的能力。
5、让学生在用转化的策略解决简单实际问题的过程中,进一步增强解决问题的策略意识和反思意识,培养根据所需解决问题的特点合理选择相应策略的自觉性和能力。
6、让学生在系统复习的过程中,进一步提高综合应用数学知识和方法解释日常生活现象、解释简单实际问题的水平,进一步用不同方式、从不同角度探索解决问题方法的能力,发展创新意识和实践能力。
情感态度方面
1、进一步感受数学思考的确定性和数学结论的严谨性,获得一些成功的体验,锻炼克服困难的意志。
2、进一步培养认真细心的学习习惯,培养发现错误及时订正的良好习惯。
3、进一步感受数学价值,感受数学与生活的密切联系,不断增强学数学、用数学的自觉性。
4、进一步了解有关数学知识的背景,体会数学的广泛应用,培养实事求是的科学态度和对社会的责任感。
5、进一步感受自己在数学知识和方法等方面的收获与进步,发展对数学的积极情感,进一步增强学好数学的信心。
三、教学重点、难点
教学重点:百分数的应用、圆柱的侧面积和表面积的计算方法、圆柱和圆锥的体积计算方法、比例的意义和基本性质、正比例和反比例、扇形统计图、转化的解题策略以及总复习的四个板块的系列内容。
教学难点:圆柱和圆锥体积计算方法的推导、成正比例和反比例量的判断、用方向和距离确定位置、众数和中位数平均数、解题策略的灵活运用。
四、教学方法
1、创设愉悦的教学情境,激发学生学习的兴趣。
2、提倡学法的多样性,关注学生的个人体验。
3、课堂训练形式的多样化,重视一题多解,从不同角度解决问题。
4、加强基础知识的教学,使学生切实掌握好这些基础知识。
本学期要以新的教学理念,为学生的持续发展提供丰富的教学资源和空间。要充分发挥教材的优势,在教学过程中,密切数学与生活的联系,确立学生在学习中的主体地位,创设愉悦、开放式的教学情境,使学生在愉悦、开放式的教学情境中满足个性化学习需求,从而达到掌握基础知识基本技能,培养学生创新意识和实践能力的目的。
学习方式:①预习教材,提出知识重点,自己是通过什么途径理解的,还有哪些疑问。②通过查阅资料找出解决问题的方法。③教师作为课堂教学的指导者,以学生自主学习为主,主张探究式、体验式的学习方法,培养学生的动手操作能力和发散思维能力。④利用小组讨论的学习方式,使学生在讨论中人人参与,各抒己见,互相启发,自己找出解决问题的方法,体 ……此处隐藏4043个字……试
六年级下册数学教学计划 篇5教学内容
分析 义教课标实验教科书六年级下册P13—14页,例3、4。
本节课的教学内容是在学生认识掌握圆柱基本的特征,进而在理解的基础上掌握圆柱的侧面积、表面积的计算方法。教材是在学生掌握长方形面积、圆的周长和面积计算方法的基础上安排的,因而要以上述知识为基础,运用转化、迁移的方法理解和掌握圆柱体的侧面积、表面积的计算方法,并且能运用这一知识解决一些简单的实际问题。另外学好这部分内容,可以进一步发展学生的空间观念,为以后学习其它几何形体打下坚实的基础。
教学目标
1、理解圆柱的表面积的含义。
2、探索并掌握圆柱侧面积和表面积的计算方法。
3、会正确计算圆柱的侧面积和表面积。
教学重难点 教学重点:
理解圆柱的表面积的含义。
教学难点:探索并掌握圆柱侧面积和表面积的计算方法。会正确计算圆柱的侧面积和表面积。
教具学具准备 圆柱体的瓶子、剪子、圆柱的模型等。
教学设计思路
本课由于概念抽象,知识难懂,易使部分学生感到枯燥无味甚至越听越迷糊。我根据学生由感知——表象——抽象的认识规律和教学的启发性、直观性等教学原则,采用多媒体辅助教学,以引导法为主,辅之以实物演示法、设疑激趣法、讨论法等,让学生全面、全程的参与教学的每一个环节,充分调动学生学习的积极性,培养学生的观察力、动手操作能力和想象力,发展学生的空间观念,总结出圆柱的侧面积、表面积的计算方法。
教学环节 教学内容与教师活动 学生活动
设计意图
一、创设情境,提出问题
二、自主学习,合作探究
三、汇报交流,评价质疑
一、创设情境,提出问题
拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?
那么大家猜猜侧面是怎样做成的呢?
二、自主学习,合作探究
研究圆柱侧面积:
1.独立操作:利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。
2.观察对比:观察展开的图形各部分与圆柱体有什么关系?
3.小组交流:能用已有的知识计算它的面积吗?
4.小组汇报。 (选出一个学生已经展开的图形贴到黑板上)
三、汇报交流,评价质疑
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)w
这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
长方形的面积=圆柱的侧面积即 长×宽 =底面周长×高,所以,
圆柱的侧面积=底面周长×高
S 侧 == C × h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:
S侧=2πr×h
如果圆柱展开是平行四边形,是否也适用呢?
研究圆柱表面积:
1.现在请大家试着求出这个圆柱体茶叶罐用料多少。
给出数据:高10厘米,底面半径是4厘米。
2.圆柱体的表面积怎样求呢?
得出结论:圆柱的表面积 = 圆柱的侧面积+底面积×2
做两个圆形的底面再加一个侧面
(说说自己的猜想)
上节课已经学习过圆柱侧面展开图的初步知识,但没有细致研究侧面展开长方形与圆柱高及底面的关系。在本节课,通过小组合作来共同研究。
动手操作,动笔验证,得出了同样适用的结论。(因为刚才是用自己喜欢的方式剪开的,所以可能出现种种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)
小组观察讨论:侧面展开的长方形的长是圆柱底面的周长,侧面展开长方形的宽是圆柱的高。
理解长方形与圆柱的关系后,在老师引导下推导出圆柱侧面积计算公式,
并试着推导和理解圆柱表面积计算公式。
计算表面积。
教学环节 教学内容与教师活动 学生活动 设计意图
四、抽象概括,提炼升华
五、拓展应用,巩固提高
四、抽象概括,提炼升华
4、教师出示例题4:一顶厨师帽,高 28cm,帽顶直径 20cm,做这样一顶帽子至少需要用多少面料?(得数保留整十平方厘米。)
这道题目已知什么,要求什么?你觉得该怎样求?
要计算做这个帽子需要用多少面料,我们可以用求解圆柱体面积的方法得到,那么,应该分哪几步?
指定两名学生板演,其他学生独立进行计算。行间巡视,注意察看最后的得数是否计算正确。
指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五人法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近似值的方法叫做进一法。
小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。
五、拓展应用,巩固提高
1.填空。
圆柱的侧面沿着高展开可能是( )形,也可能是( )形。第二种情况是因为( )。
2.要求一个圆柱的表面积,一般需要知道哪些条件( )。
4.教材第六页试一试。
分组讨论:是求圆柱形的表面积,但是需要少算一个底面的面积)
独立完成。
做完后,集体订正。
理解实际生活中计算圆柱表面积的几种情况:有时需要计算三个面,有时只需计算一个底面和侧面的面积。
要视情况而定。
完成练习。
巩固所学。
作业设计(可附页)
一、 填空题
1.用一张长4.5分米,宽2分米的长方形纸,围成一个圆柱形纸筒,它的侧面积是()。
2.用一张边长是20厘米的正方形铁皮,围成一个圆柱体,这个圆柱体的侧面积是( )。
3.直圆柱的底面周长6.28分米,高1分米,它的侧面积是( )平方分米。(π取3.14)。
二、 应用题
1.用一张长 2.5米,宽 1.5米的铁皮做一个圆柱形烟筒,这个烟筒的侧面积是多少?(接口处忽略不计)
2.一个无盖的圆柱形铁皮水桶,高50厘米,底面直径30厘米,做这个水桶大约需用多少铁皮?(π取3.14。得数保留整数)
个人调整意见
板书设计
长方形面积= 长 ×宽
圆柱侧面积=底面周长×高
S = 2∏r ×h
圆柱的表面积
长方形 长 宽
圆柱侧面底面 周长 高